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The unsteady, three-dimensional, incompressible, viscous flow interactions between a 
vortical (initially cylindrical) structure advected by a uniform free stream and a 
spherical particle held fixed in space is investigated numerically for a range of particle 
Reynolds numbers 20 < Re < 100. The counter-clockwise rotating vortex tube is 
initially located ten sphere radii upstream from the sphere centre. The finite-difference 
computations yield the flow properties and the temporal distributions of lift, drag, and 
moment coefficients of the sphere. Initially, the lift force is positive owing to the 
upwash on the sphere, then becomes negative owing to the downwash as the vortex 
tube passes the sphere. Varying the size of the vortex core (n) shows that the r.m.s. lift 
coefficient is linearly proportional to the circulation of the vortex tube at small values 
of n. At large values of n, the r.m.s. lift coefficient is linearly proportional to the 
maximum fluctuation velocity (vmuz) induced by the vortex tube but independent of (r. 
For intermediate values of n, the r.m.s. lift coefficient depends on both n and vmus (or 
equivalently both n and the circulation). We observe some interesting flow phenomena 
in the near wake as a function of time owing to the passage of the vortex tube. 

1. Introduction 
This paper is concerned with the unsteady, three-dimensional, incompressible, 

viscous flow interactions between a vortical structure (initially cylindrical) advected by 
a uniform free stream and a spherical solid particle which is held fixed in space. This 
flow is equivalent to that of a spherical particle moving along a straight line and 
traversing the vortical structure at constant velocity. The particle Reynolds number 
based on the free-stream velocity and particle diameter is in the range 20 < Re < 100. 
We obtain the unsteady velocity and pressure distributions via the numerical solution 
of the time-dependent three-dimensional Navier-Stokes equations within a spherical 
domain surrounding the sphere and the moving vortex tube. 

The motivation for studying this flow is the need to understand how the forces (drag, 
lift and torque) imparted on a particle are influenced by fluctuations in the velocity and 
pressure of the carrier flow as is the case in particle-laden turbulent flows. Knowledge 
of the time-dependence of these forces and the unsteady flow field is essential for the 
accurate calculation of the particle trajectory and the heat and mass transfer rate of the 
particle (or droplet) which in turn is a prerequisite for predicting particle dispersion 
and vaporization rate in turbulent flows. The exact relations between these forces and 
the turbulent fluctuations cannot be obtained analytically owing to the nonlinearity of 
the equations governing the motion of the particle and fluid. While the cylindrical 
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vortex is far too simple to represent real turbulence, some important elementary 
understanding can result from this study. 

Numerical simulation of the dispersion of particles in a turbulent flow requires the 
solution of the equation of particle motion. This equation which is classically known 
as the Basset-Boussinesq-Oseen (BBO) equation and has been re-derived recently by 
Maxey & Riley (1983) is restricted to low Reynolds number Re 6 1, where 
Re = d‘ ju’ - v’l/v’; v‘ and u’ are the velocities of the particle and its surrounding fluid 
respectively, d‘ is the particle diameter, and v’ is the fluid kinematic viscosity. 
Furthermore, the drag force in that equation consists of two terms, namely, the quasi- 
steady Stokes drag and the unsteady memory term (Basset). The former is purely 
viscous, whereas the latter depends on both the viscosity and particle acceleration 
relative to the fluid. The superposition of these two terms is a result of the linearization 
of the Navier-Stokes equations by Basset (1888). A more serious restriction (than 
Re < 1) in the equation of particle motion is that the velocity gradients in the carrier 
flow in the neighbourhood of the particle should be very small. This requires that the 
shear Reynolds number = (d2 /v ’ )  (Uh/L’) 4 1, where a’ is the particle radius, and 
(Uh/L‘) is a reference gradient of the undisturbed velocity field. Therefore, the 
interesting case in which the eddy (or vortex) size is comparable to that of the particle 
cannot be properly treated by the standard equation of particle motion. This situation, 
in addition to being relevant to the fundamental understanding of fluid dynamics, is of 
practical interest as well. For example, in a typical gas turbine combustor where the 
Reynolds number is of the order of lo5 and the integral lengthscale is of the order of 
0.1 m, the smallest (Kolmogorov) lengthscale, 7, is about 100 p, which is comparable 
to the size of a typical fuel droplet. Fluid motion at the Kolmogorov lengthscale 
experiences the largest strain rates and scalar gradients in the flow. The largest scalar 
gradients control the important phenomena of heat and mass transfer and chemical 
reaction. Motion at the largest lengthscales (% 7) contains most of the turbulence 
energy and governs the dispersion of particles (or droplets) but not the small-scale 
phenomena mentioned above. 

Almost all application-oriented studies of diluted particle suspension calculate the 
drag on the particle using the standard drag curve. This drag curve has been obtained 
(experimentally and numerically) for a particle fixed in space subjected to a steady flow. 
In the case of unsteady flow, this drag relationship is an approximation that can be 
valid only if the timescale of the particle motion is much larger than that of the flow. 
Note that empirical relationships for unsteady drag have been proposed (e.g. 
Houghton 1963; Odar 1966; Schoneborn 1975; Ingebo 1956). The expression of 
Ingebo, derived experimentally, is valid only for the limited conditions of the 
experiment. All other expressions concern mainly purely harmonic flows. Additional 
interactions between the particle and the flow are the well-known Saffman’s lift due to 
uniform shear (1965, 1968) and the lift due to particle rotation (Rubinow & Keller 
1961). Saffman’s lift force expression is valid only for Re 4 R:Ea,. and R,,,,, 4 1, 
where Rshear = (du’/dy’) d‘’/(4v’). Under these conditions, the lift due to particle 
rotation is negligible (Saffman 1965). Recently, McLaughlin (1991) removed the 
restriction Re 4 RiL,,. and provided a new form for the lift force. 

Three-dimensional flow interactions between a vortical structure and a bluff body (a 
rigid sphere in the simplest form) at finite Reynolds number have not been investigated 
yet. Our present approach, outlined at the beginning of this section, is a first step 
toward better understanding of the physics of interaction between a particle and the 
carrier turbulent flow. For example, we examine the details of the temporal behaviour 
of the flow structure around the sphere owing to the passage of the vortex tube. 



Unsteady flow interactions - 125 

Y 

FIGURE 1 .  Flow geometry and coordinates. 

Furthermore, we study the effect of varying the ratio of vortex tube size to particle size, 
Reynolds number, and offset distance between the particle and the vortex tube on the 
temporal distributions of the forces imparted on the particle (drag, lift and torque) and 
the flow structure in the neighbourhood of the particle. 

The next section provides a mathematical description of the flow considered, the 
governing equations and the numerical solution procedure. Section 3 discusses the 
results including the numerical accuracy issues and the effects of varying the 
parameters listed above. Section 4 provides a summary of the work. 

2. Problem statement and formulation 
2.1. The flow description 

We consider the time-dependent, three-dimensional, incompressible, viscous flow 
interactions between an initially cylindrical vortex tube and a spherical solid particle. 
The vortex tube is moving with the laminar free stream, and a sphere is suddenly placed 
and held fixed in space as shown in figure 1. The initial offset distance, doff,. denotes the 
shortest distance, normalized by the sphere radius, between the initial vortical axis and 
the ( y ,  z)-plane, which is parallel to the free stream. All the variables are non- 
dimensionalized using the sphere radius ah as the characteristic length and U l ,  as the 
characteristic velocity, where the superscript ’ denotes dimensional quantity. The 
cylindrical vortex tube, whose diameter is of the order of the sphere diameter, is 
initially located ten radii upstream from the centre of the sphere. The effects of the 
vortex tube on the sphere are negligible at this initial distance because the magnitude 
of the initial velocity field induced by the vortex tube is less than 2 % of the free-stream 
velocity. Far upstream, the flow is uniform with constant velocity U L  k parallel to the 
( y ,  z)-plane. We have one symmetry plane, the (x, z)-plane, as seen in figure 1. 

Two coordinate systems are used in our formulation : the Cartesian coordinates 
(x, y ,  z) and the non-orthogonal generalized coordinates (&7, 0. The origin of the 
former coincides with the sphere centre. 6 is the radial, 7 is the angular, and 5 is the 
azimuthal coordinates. The non-orthogonal generalized coordinate system can be 
easily adapted to three-dimensional arbitrary geometries. In the present study, a 
spherical domain is used, and the grid reduces to an orthogonal, spherical grid. The 
grids are denser near the surface of the spherical particle, and the grid density in the 
radial direction is controlled by the stretching function developed by Vinokur (1983). 
Owing to symmetry, the physical domain is reduced to a half spherical space. The 
domain of the flow is bounded by 1 d 6 d N,,  1 d 7 d N,, 1 < 5 < N3, where 6 = 1 
and Nl correspond, respectively, to the sphere surface and the far-field boundary 
surrounding the sphere; 7 = 1 and N ,  denote, respectively, the positive z-axis and the 
negative z-axis; 5 = 1 and N ,  refer, respectively, to the (x, 2)-plane in the positive 



126 I .  Kim, S .  Elghobashi and W. A .  Sirignano 

Radial distance 

FIGURE 2. Comparison of tangential velocities induced by ---, a point vortex and 
-, a vortex tube for r, = 2.5 and ~7 = 1. 

x-direction and the (x, z)-plane in the negative x-direction. Uniform spacing 
( S t  = ST = S< = 1) is used, for convenience, for the generalized coordinates. 

2.2. The vortex tube features 
The initial vortex tube has a small core region with a radius cr (normalized by the 
sphere radius). This core is defined such that the initial velocity induced by the vortex 
tube approaches zero as the distance from the centre of the vortex tube goes to zero, 
and at distances much greater than cr, the induced velocity approaches that of a point 
vortex (figure 2). We use the vortex tube construction of Spalart (1982), which has the 
following stream function: 

where r, is the non-dimensional circulation around the vortex tube at radius (r and at 
the initial time. r, is positive when the vortex tube rotates counterclockwise, and xo 
and zo denote the location of the centre of the vortex tube. The circulation around a 
circular path far away from the centre of the vortex is given by r, = 2rV. The tangential 
velocity distribution of the vortex tube compared with a point vortex is shown in figure 
2 for rv = 2.5 and (r = 1.0. As shown in figure 2, the cylindrical vortex tube can be 
viewed as an evolution from the point vortex owing to the cylindrical viscous diffusion. 
The initial pressure field due to the vortex tube is obtained by solving the radial 
component of the Navier-Stokes equations which balances the centrifugal acceleration 
and the pressure gradient for circular streamlines, and has the following form 

r2 1 
p,(x, z, t = 0) = -2 

27c2 (x - xo)2 + (z - zo)2 + cr2 ' 
where pv is non-dimensional pressure defined by pv = (ph-pk)/p'U'2. The pressure 
due to the vortex tube attains its lowest value, p,, min = -rt/(27c2(r2), at the centre of 
the vortex tube and approaches zero at far distances from the centre of the vortex. 
Equation (2) is used to prescribe only the initial pressure field generated by the vortex 
tube. 
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FIGURE 3. (a) Velocity and (b)  vorticity fields due to a vortex tube as a function of radial distance 
and time for Re = 100, r, = 2.5 and cr = 1. 

In order to gain insight about the properties of the vortex tube, we examine the flow 
field generated in the absence of the particle. We compute the induced velocity and 
vorticity field as a function of radius and time owing to the vortex tube moving with 
the free stream ( U L  k). The origins of the moving coordinate system is the centre of the 
vortex tube. We solve the following linear diffusion equation which is the tangential 
component of the Navier-Stokes equations balancing the unsteady and diffusion terms 
for the tangential momentum (Batchelor 1967), 

where R is the radial distance from the centre of the vortex tube, u0 is the tangential 
velocity around the vortex tube normalized by the free-stream velocity, and Re is the 
Reynolds number based on the reference lengthscale ah and the free-stream velocity. 
Figures 3 (a)  and 3 (b) show, respectively, the velocity and vorticity fields as a function 
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of radial distance and time for Re = 100, ru = 2.5, and c = 1.0. The size of the vortex 
core becomes larger as time increases owing to viscous diffusion, whereas the 
magnitudes of the tangential velocity and the vorticity inside the vortex core decrease. 
Note that this classical linearized analysis is not employed in the present study; rather 
a fully nonlinear computational analysis is performed. 

2.3. Governing equations and boundary conditions 
The continuity and momentum equations and the initial and boundary conditions are 
non-dimensionalized using the sphere radius ah as the characteristic length and U l ,  as 
the characteristic velocity. 

v. v =  0. (4) 

( 5 )  
av 2 
at Re 

-+V. (VV)  = -Vp+-VV. 

The governing equations (4) and ( 5 )  are cast in terms of the generalized coordinates 
(( ,r ,  LJ to treat a three-dimensional body of arbitrary shape. The numerical integration 
is performed using a cubic computational mesh with equal spacing (6 t  = 67 = 6c = 1). 

The velocities on the sphere surface are zero owing to the no-slip condition, and the 
pressure on the sphere is obtained from the momentum equation. The boundary 
conditions are 

p = 0, u = v = 0, w = 1 at 6 = N,,  N2mid d 7 d N,(upstream), (7) 

au av aw 
a( a ( -%-  - 0 at 6 = N,,  1 d 7 < N2m2d (downstream), (8) p = o ,  -=- -  

ap - au aw 
ig-ig=z = 0, v = 0 at c =  1, N3, (9) 

where u, v, and w are the velocities in the x-, y-, and z-directions, respectively, V, is the 
velocity in the direction normal to the sphere surface, and p is the pressure. n denotes 
the direction normal to the sphere surface, a/an = ((: + 6; + [E)1/2 a/at, and 7 = NZmid 

denotes the mid-plane between 7 = 1 and N,. Equation (9) corresponds to the 
symmetry conditions and zero v velocity in the (x,z) symmetry plane. Conditions 
guaranteeing continuity in the 7 direction for p, u, v and w on the axes 7 = 1 and 7 = N ,  
are also imposed. 

In order to start the numerical solution of equations (4) and (5) ,  we provide initial 
velocity and pressure fields by superposing the flow fields due to the uniform stream 
and the vortex tube in addition to the no-slip condition on the sphere surface: 

a$ pa =pv, u, = -2 
a Z  ’ ax 

v, = 0, w, = 1 +A a$ except at ( =  1 ,  

p o  =pu, u, = v, = w, = 0 at t = 1, (1 1) 

where $u and pu are given by equations (1) and (2), respectively. 
The only non-dimensional groupings appearing in the equations and initial and 

boundary constraints are the sphere Reynolds number, vortex tube radius, offset 
distance, and vortex circulation (or vortex Reynolds number). 
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The drag, lift and moment coefficients are evaluated in dimensional form as follows. 

F b  = ls-p’n.kdS’+ (12) 

M’ = ls r’ x T’ dS’, (14) 

where S‘ denotes the surface of the sphere, n is the outward unit normal vector at the 
surface, r’ is the position vector from the centre of the sphere, and T’ is the viscous stress 
tensor. The lift force is assumed positive when it is directed toward the positive x-axis. 
Owing to symmetry, only the y-component of the moment is non-zero and is assumed 
positive in counter-clockwise direction. 

The non-dimensional coefficients of drag, lift and moment are defined, respectively, 
as 

Note that in this analysis, the sphere does not accelerate or rotate owing to the 
aerodynamic forces and torque. 

2.4. Numerical solution 
We have developed a three-dimensional, implicit, finite-difference algorithm to solve 
simultaneously the set of the discretized partial differential equations. The method is 
based on an Alternating-Direction-Predictor-Corrector (ADPC) scheme to solve the 
time-dependent Navier-Stokes equations. ADPC is a slight variation of Alternating- 
Direction-Implicit (ADI) method. It is first-order accurate in time but is effective and 
implemented easily when embedded in a large iteration scheme (Patnaik 1986; Patnaik 
et al. 1986). The control volume formulation is used to develop the finite-difference 
equations from the governing equations with respect to the generalized coordinates 
(5, 7, 0. One of the advantages of the control volume formulation is that mass and 
momentum are conserved over a single control volume, and hence the whole domain 
regardless of the grid fineness. An important part of solving the Navier-Stokes 
equations in primitive variables is the calculation of the pressure field. In the present 
work, a pressure correction equation is employed to satisfy indirectly the continuity 
equation (Anderson, Tannehill & Pletcher 1984). The pressure correction equation is 
of the Poisson type and is solved by the Successive-Over-Relaxation (SOR) method. 

The overall solution procedure is based on a cyclic series of guess-and-correct 
operations. The velocity components are first calculated from the momentum equations 
using the ADPC method, where the pressure field at the previous timestep is employed. 
This estimate improves as the overall iteration continues. The pressure correction is 
calculated from the pressure correction equation using the SOR method, and new 
estimates for pressure and velocities are obtained. This process continues until the 
solution converges at each time-step. 
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N l x N 2 x N 3  ‘DP ‘DV C D  c;t; 
Re = 20 

21 x 2 1  x21  1.048 1.777 2.825 
31 x 3 1  x 3 1  1.039 1.740 2.779 
41 x 4 1  x 4 1  1.037 1.731 2.768 2.74 

Re = 100 
21 x 2 1  x 2 1  0.560 0.590 1.150 
31 x31  x 3 1  0.535 0.582 1.117 
41 x41  x 4 1  0.526 0.581 1.107 1.09 

TABLE 1. Drag coefficients as a function of grid density at Re = 20 and 100, where * denotes the 
data from the correlation of Clift et al. (1978). 

3. Results and discussion 
In $(3.1), we test the accuracy of the full three-dimensional solution procedure by 

predicting the axisymmetric flow over a single sphere and by examining the effects of 
grid resolution on the maximum lift coefficient of the sphere owing to the interaction 
between a vortex tube and a sphere. In $$(3.2), (3.3), (3.4) and (3.9, we discuss the three- 
dimensional interactions between a vortex tube and a sphere, the effects of the offset 
distance, the size of the vortex tube, and Reynolds number, respectively. 

3.1. Numerical accuracy 
Here we examine the flow generated by an impulsively started solid sphere in a 
quiescent fluid at two Reynolds numbers: 20 and 100. The time-dependent solution 
converges asymptotically to a steady-state which is in good agreement with the 
available experimental data and correlations as shown in tables 1 and 2. Table 1 lists 
the drag coefficients as a function of the computational grid density at Reynolds 
numbers 20 and 100, respectively, and compares them with the correlations of Clift, 
Grace and Weber (1978). Table 2 shows the pressures at the front and rear stagnation 
points and the separation angle measured from the front stagnation point as a function 
of grid density at Reynolds number 20 and 100, in comparison with the data of Taneda 
(1956) and also with the correlations of Clift et al. (1978). Although the solutions in 
these test cases are axisymmetric, none of the three velocity components in our 
formulation becomes identically zero. Therefore, the three-dimensional solution 
scheme is fully exercised here. The calculations were performed for three different 
grids, ( N ,  x N ,  x N3)  = (21 x 21 x 21), (31 x 31 x 31) and (41 x 41 x 41), in a comp- 
utational domain with an outer boundary located at 21 sphere radii from the sphere 
centre. 

We tested the solution procedure by varying the far-field boundary condition and by 
changing the location of the outer boundary. In the first test, the far-field outflow 
boundary condition was changed from a$/& = 0 to a$/az = 0 ($ = u, 0 or w). There 
was almost no difference in the drag coefficient and the near wake size (the separation 
angle and length of the recirculation eddy) at Reynolds numbers 20 and 100. Our 
calculation shows that separation does not occur at Reynolds number 20. In the second 
test, the location of the outer boundary in downstream was changed from 21 to 41 
sphere radii. There was virtually no change in the drag coefficient and the near wake 
size at both Reynolds numbers. 

We examined the effects of grid resolution on the lift coefficients of the sphere owing 
to the flow interaction between a cylindrical vortex tube flowing with the free stream 
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FIGURE 4. Pressure and shear stress distributions around the sphere in the (x, z)-plane of symmetry 
as a function of grid resolution at t = 12 for Re = 100, doff = 0, u = 1, and u,,, = 0.4. 

Nl x N2 x N3 P O f  Po, 8, 0: 
Re = 20 

21 ~ 2 1 x 2 1  0.668 -0.201 180 
31 ~ 3 1 x 3 1  0.707 -0.178 180 
4 1 ~ 4 1 x 4 1  0.721 -0.171 180 180 

21 x 21 x 21 0.554 -0.093 8 124.09 
31 x 31 x 31 0.554 -0.083 1 125.62 
41 x 41 x 41 0.554 -0.0792 126.16 126.5 

Re = 100 

TABLE 2. Pressure at the front and rear stagnation points and the separation angle measured from the 
front stagnation point as a function of grid density at Re = 20 and 100, where * denotes the data from 
Taneda (1956) and the correlation of Clift et ai. (1978). 

NIXN2XN3 CL,,,,,,. CL ,maX* ,v  C L , m a x 2  

Re = 20 
21 x 21 x 21 -0.336 -0.359 -0.695 
31 x 31 x 31 -0.358 -0.363 -0.722 
41 x 41 x 41 -0.362 -0.363 -0.725 

Re = 100 
21 ~ 2 1  ~ 2 1  -0.336 -0.159 -0.495 
31 x 31 x 31 -0.433 -0.186 -0.619 
41 x 41 x 41 -0.476 -0.192 -0.668 
51 x 51 x 51 -0.494 -0.191 -0.685 

TABLE 3. Maximum negative lift coefficients as a function of grid density at Re = 20 and 100. 

and a sphere fixed in space at Reynolds numbers 20 and 100. The lift coefficients are 
obtained for the offset distance doff = 0, vortex core radius CT = 1, and maximum 
fluctuation velocity v,,, = Tv/(27ccr) = 0.4. Table 3 shows the maximum negative lift 
coefficient (C,,,,.) of the sphere as a function of the computational grid density at 
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FIGURE 5. Pseudo-streamlines (left-hand column) and contour lines of y-component vorticity (right- 
hand column) in the principal plane at (a) t = 0, (b)  1, ( c )  6, (d)  9, (e) 10, (f) 11, &) 12, (h)  13, (i) 
15, ( J ]  18, (k)  21 and (I) 30 for Re = 100, doff = 0, (T = 1 and vmaZ = 0.4. 
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Reynolds numbers 20 and 100. The calculations were performed for three different 
grids, ( N ,  x N,  x N3)  = (21 x 21 x 21), (31 x 31 x 31) and (41 x 41 x 41) for Re = 20, 
and four different grids, ( N ,  x N2 x N3) = (21 x 21 x 21), (31 x 31 x 31), (41 x 41 x 41) 
and (51 x 51 x 51) for Re = 100, in a computational domain with an outer boundary 
located at 21 sphere radii from the sphere centre. The result of the 31 x 31 x 31 grid 
differs by 0.42% for that of the 41 x 41 x 41 grid for Re = 20, and the result of the 
41 x 41 x 41 grid differs by 2.5 % from that of the 51 x 51 x 51 grid for Re = 100. Figure 
4 provides additional results on the effect of grid resolution on convergence and shows 
the distributions of the pressure and shear stress coefficients (normalized by the 
dynamic pressure) around the sphere in the (x ,  z)-plane of symmetry in the positive x- 
direction for the same parameters as used above with Re = 100. The pressure and shear 
stress distributions were obtained at t = 12 about which the lift coefficient reaches its 
maximum in negative value. The pressure coefficient at (x ,  z )  = (0, - 1) of the 
41 x 41 x 41 grid differs by 0.93% from that of the 51 x 51 x 51 grid. The same 
calculations were performed by changing the location of the outer boundary in 
downstream from 21 to 41 sphere radii. There was virtually no change in the lift, 
moment and drag coefficients. 

In order to examine the far-field boundary effects, we repeated the simulation as 
above for Re = 100, doff  = 0, v = 1, and v,,, = 0.4 but with a box-type computational 
domain with symmetry boundary conditions on its sides. The lift, moment and drag 
coefficients of the box-type computational domain at t = 12 differs by 0.12%, 0.17% 
and 0.13 YO, respectively, from those of the spherical computational domain used in the 
present paper. The spherical computational domain gives a little finer resolution than 
does the box-type computational domain with the same number of grid points, and so 
smoother contour lines for the vorticity and stream lines in the (x ,  y )  symmetry plane. 
We also solved the same problem as above by employing a complete computational 
domain without the symmetry plane and periodic boundary condition in the 5- 
direction. In that case, the lift coefficients differ by 0.16 YO from those in table 3 where 
the symmetry condition was employed. The 41 x 41 x 41 grid is used in the following 
calculations. 

The run for the interaction between a vortex tube and a sphere at Reynolds number 
100 with the 41 x 41 x 41 grid required 2.62 mega words, a dimensionless timestep of 
At = 0.0025, and a total time of 2.95 C.P.U. hours on Cray Y-MP8/864 for the final 
time of t f  = 24. Each timestep takes about 1.11 C.P.U. seconds. Another test was 
performed to examine the effects of the timestep. The same calculation as above was 
repeated for Re = 100, doff  = 0, v = 1, and v,,, = 0.4 but with the time-step reduced 
by half. The lift, moment and drag coefficients differ by 0.25 YO, 0.19 YO and 0.003 %, 
respectively, from those obtained with the timestep used in the presented results. 

3.2. Interactions of a vortex tube and a sphere 
We consider the interactions of a vortical structure advected by the free stream and a 
sphere suddenly placed in the flow and held fixed in space at Reynolds number 100. The 
vortical structure is initially a cylindrical vortex tube rotating counter-clockwise in 
figure 1 with a non-dimensional radius of unity and an offset distance of zero, and 
located at 10 sphere-radii upstream from the centre of the sphere. 

3.2.1. Flow structure 
In order to illustrate better the fluid motion, we consider the flow field in the (x ,  z)- 

plane of symmetry, which is defined as the principal plane, where the strongest 
interactions occur between the vortical structure and the sphere. 
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Pseudo-streamlines are employed in the following illustrations. The pseudo- 
streamlines are obtained from the pseudo-stream function which is defined by 
assuming that the velocity field in the principal plane does not change in the 
perpendicular direction to the principal plane and by using the two-dimensional stream 
function definition. The sphere surface in the principal plane is used as a reference 
streamline (@l.ps = 0). We note that a real stream function @ cannot be defined and 
calculated from the velocity in the principal plane owing to the existence of a 
divergence associated with the third component of velocity. Nevertheless, for 
descriptive purposes only, it is convenient to use the two-dimensional stream function 
definition to present approximations to the streamline pattern. 

Figures 5 (aF5 (1) display the pseudo-streamlines (left-hand column) and the contour 
lines of y-component vorticity (right-hand column) in the principal plane at  t = 0, 1, 
6, 9, 10, 11, 12, 13, 15, 18, 21 and 30 for Re = 100, d o f f =  0, g = 1, and 
umaz = r U / ( 2 m )  = 0.4. The contour values of the pseudo-streamlines are 0, f0.02, 
f 0.1 and k 0.3. The contour values of the vorticity are k 0.4, k 0.5, f 0.8, f 1.4 and 
f 2, with the highest magnitude at the sphere surface. The solid and dotted lines in the 
figures represent positive and negative values. Figures 6 (aF6 ( j )  show the pressure 
coefficient, 2(p-pm)/pU2, and shear stress coefficient, 27,,/pU;, around the sphere in 
the principal plane, respectively, at t = 1, 6, 9, 10, 11, 12, 13, 15, 18 and 21. Note that 
figure 6(a) is for t = 1 which corresponds to figure 5(b). 

At t = 0, figure 5(a) shows that a spherical vortex sheet is generated around the 
sphere owing to the no-slip condition at the sphere surface. The subsequent figures 
show that the vortex sheet around the sphere is advected downstream as well as 
diffused outwards from the sphere. The vorticity on the edge of the vortex core is 0.4 
at  t = 0 for r, = 2.51 and CT = 1 which correspond to u,,, = rU/(27cc) = 0.4. The 
vortex tube is initially cylindrical and thus should appear as a circle in the principal 
plane. However, the vortex tube in figure 5(a) is not an exact circle because the grid 
resolution is relatively coarse at the initial location of the vortex tube which is 
far upstream from the sphere and the linear interpolation is used to draw the contour 
lines. However, we calculate analytically the exact velocity and pressure fields induced 
by the vortex tube by using equations (1) and (2), and prescribe them as initial 
conditions. Therefore, the magnitudes of the initial velocity components at a given 
location (x, z )  are fixed no matter what grid distribution is used. Thus, the circulation 
around a large circle enclosing the vortex tube remains the same as that of the vortex 
tube. The velocity and pressure fields as a function of time are almost not affected by 
the initial vortex tube shape obtained by the linear interpolation. The line connecting 
the front and rear stagnation points in the standard axisymmetric flow over a single 
sphere, which is the x = 0 line in the principal plane, will be used as a reference line. 
We refer to the region above the line as ‘upper’ region and that below the line as 
‘lower’ region. 

For 0 < t 6 9, the vortex tube is upstream of the sphere as shown in figures 
5 (bF5 (d ) .  The vortex tube rotating counterclockwise produces downwash upstream of 
itself and upwash downstream. Therefore, the front stagnation point on the sphere is 
shifted below the plane x = 0 owing to the upwash, and thus, the fluid particles in the 
upper left-hand region move faster than do those in the lower left region of the sphere. 
As a consequence, lower pressure and higher shear stress act in the upper left-hand 
region compared to the lower left-hand region as shown in figures 6(a)-6(c), and this 
causes a positive lift force on the sphere. Note that in figure 6 the clockwise direction 
is considered positive for the shear stress in the upper region of the sphere, and the 
counterclockwise direction is considered positive for the shear stress in the lower 
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region. On the other hand, the shift of the front stagnation point below the plane x = 0 
causes the fluid particles to continue to accelerate after 8 = 90" at the bottom of the 
sphere but to begin to decelerate before 8 = 90" at the top of the sphere where 8 is 
measured from the negative z-axis, as shown in the pressure distribution around the 
sphere in the principal plane in figures 6(a)-6(c). Thus the fluid particles move faster 
in the bottom and lower right-hand regions than in the top and upper right-hand 
regions of the sphere. As a consequence, lower pressure and higher shear stress act in 
the bottom and lower right-hand regions compared to the top and upper right-hand 
regions as shown in figures 6 (aF6 (c), and this causes the fluid particles turning around 
the upper eddy to be pushed into the lower region of the near wake as shown in figures 
5 (c) and 5 ( d ) .  Figures 5 (c) and 5 ( d )  also show that the upper eddy is formed by the 
fluid separating on the upper portion of the sphere as in the case of axisymmetric flow 
past a sphere without the presence of the vortex tube. On the other hand, the lower 
eddy is not formed by the fluid separating on the lower portion of the sphere, but rather 
by the fluid turning around the upper eddy and being entrained by the lower flow. This 
lower eddy is detached from the sphere. A portion of the fluid moving around the top 
of the sphere passes between the detached lower eddy and the sphere. A similar flow 
pattern was found by Kim, Elghobashi & Sirignano (1993) in their study of three- 
dimensional flow over two spheres placed side by side. 

For 9 < t ,< 10, the figures 5 ( d )  and 5(e)  shows that the vortex tube contacts the 
boundary layer of the sphere. 

For 10 < t < 13, the figures 5(&5(h) show that the vortex tube goes around the 
bottom of the sphere. The vortex tube is now downstream of the front stagnation point 
in the axisymmetric flow past a sphere and produces downwash on the sphere. 
Therefore, the front stagnation point on the sphere is shifted above the plane x = 0, 
and thus the fluid particles in the lower left-hand region move faster than do those in 
the upper left-hand region of the sphere. As a consequence, lower pressure and higher 
shear stress act in the lower left-hand region compared to the upper left-hand region 
as shown in figures 6(e)-6(g), and this causes the negative lift force on the sphere. On 
the other hand, the shift of the front stagnation point above the plane x = 0 causes the 
fluid particles to move faster in the boundary layer of the top and upper right-hand 
regions compared to that of the bottom and lower right-hand regions of the sphere as 
shown in figure 7, which shows the tangential velocity profiles, uo(r), at 8 = 90" on the 
top and the bottom of the sphere in the principal plane at t = 12, and this causes the 
higher shear stress in the top and upper right-hand regions compared to the bottom 
and lower right-hand regions as shown in the figures 6 cf) and 6 (g). However, during 
this time period, the pressure distributions at the top and bottom of the sphere in the 
principal plane have different features from those of the shear stress owing to the 
following reason. The counterclockwise vortex tube in the uniform stream produces a 
flow field in which the fluid velocity is less than that of the uniform stream above the 
vortex tube and higher than that of the uniform stream below the vortex tube with 
respect to fixed coordinate system in space. Owing to this shear flow, the fluid velocity 
on the edge of (and outside) the boundary layer at the bottom of the sphere is larger 
than that at the top of the sphere as shown in figure 7, and thus the pressure at the 
bottom of the sphere is lower than that at the top of the sphere. This pressure difference 
causes the fluid particles turning around the top of the sphere to be pushed into the 
lower region of the wake forming an S-shaped path (figures 5(g) and 5(h)). The 
combined effect of the upward shift of the front stagnation point owing to downwash 
of the vortex tube and the velocity difference between the top and the bottom of the 
sphere owing to the shear flow induced by the vortex tube results in a higher magnitude 
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FIGURE 7. Tangential velocity profile, us(r), at 6 = 90" on the top and the bottom 
of the sphere in the principal plane at t = 12. 

of the maximum negative force than that of the maximum positive force, as will be 
shown in detail in 93.2.2. The upper separation eddy becomes smaller during this time 
period, because the pressure difference between the upper and lower wake just 
downstream of the sphere becomes larger when the vortex tube passes the plane z = 1 
(tangent to the rear stagnation point in axisymmetric flow), and more fluid particles are 
pushed into the lower wake just behind the sphere. At t = 12 and 13, no separation 
eddies appear in the wake as shown in figures 5(g) and 5(h), and the flow does not 
separate in the upper region of the sphere as shown in figures 5 (g), 5(h), 6 c f )  and 6 (g). 
We note that the separation point in the principal plane is the point at which the shear 
stress vanishes. 

The reason for the passage of the counterclockwise-rotating vortex tube around the 
bottom of the sphere rather than around the top is as follows. First, note that the well- 
known two-dimensional, inviscid case of a vortex interacting with a cylinder has a 
counterclockwise (clockwise) rotating vortex advecting clockwise (counterclockwise) 
around the cylinder. In our case, the opposite behaviour suggests that viscosity is 
important in this phenomenon. Note further that the vorticity levels associated with 
the viscous boundary layer on the sphere are greater than those associated with the 
tube. When the counterclockwise-rotating vortex tube comes close to the sphere 
boundary layer, it augments the magnitude of the edge velocity in the lower boundary 
layer and reduces the edge velocity in the upper boundary layer. The result is a higher 
strength vorticity in the lower boundary layer than in the upper boundary layer (see the 
vorticity contours in figures 5 (d)-5 (f)). (The magnitude of the highest vorticity in the 
lower boundary layer is 15% higher than that in the upper boundary layer at t = 9.) 
Consequently, the vorticity in the lower boundary layer induces a velocity in the 
downward direction at the location of the vortex tube with higher magnitude than that 
induced by the vorticity in the upper boundary layer. This downward induced velocity 
advects the vortex tube below the sphere. 

For 13 < t d 19, the vortex tube is downstream of the sphere as shown in figures 5( i )  
and 5 ( j )  and produces downwash on the sphere. Therefore, the negative lift force acts 
on the sphere owing to the shift of the front stagnation point above the plane x = 0 in 
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FIGURE 8. Two views of a three-dimensional contour surface of wy = 0.2 at t = 20 for the flow 
depicted in figure 5 ;  (a)  a side view looking normal to the principal plane (b)  a view looking down 
with an acute angle toward the ( y ,  z)-plane. 

a similar manner as for 10 < t d 13, but the negative lift force is reduced as the vortex 
tube moves further downstream. The shift of the front stagnation point above the 
plane x = 0 causes the fluid particles to move faster in the top and upper right-hand 
regions than in the bottom and lower right-hand regions of the sphere, and this causes 
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the lower pressure and higher shear stress in the top and upper right-hand regions 
compared to those in the bottom and lower right-hand regions as shown in figures 6(h) 
and 6(i) .  However, because the vortex tube is still intersecting the near wake and thus 
producing strong downwash in the near wake, the fluid particles turning around the 
top of the sphere are pushed into the lower region of the near wake. This allows no 
room for the lower eddy to grow. On the other hand, the upper eddy grows as the 
vortex tube moves downstream because the fluid particles turning around the top of the 
sphere experience less force pushing them into the lower region of the near wake. 

For t 2 20, the vortex tube is far downstream of the sphere as shown in figures 5(k)  
and 5 ( l )  and produces weak downwash on the sphere, and thus the lift force on the 
sphere is almost zero as will be shown in 93.2.2. The weak downwash causes the front 
stagnation point on the sphere to be shifted slightly above the plane x = 0, and thus 
the fluid particles move slightly faster in the top and upper right-hand regions than in 
the bottom and lower right-hand regions of the sphere, and this causes the higher shear 
stress and lower pressure in the top and upper right-hand regions as shown in figure 
6(j) .  Now, the downward force due to the vortex tube is very weak in the near wake 
because the vortex tube is far downstream. Therefore, the lower eddy grows, and owing 
to the lower pressure in the upper region of the sphere, the fluid particles turning 
around the lower eddy are pushed up into the upper near wake as shown in figures 5 (k )  
and 5(1). 

We now examine a three-dimensional view of the vortex tube by considering the y- 
component of vorticity vector. Figures 8(a) and 8(b) show two views of a three- 
dimensional contour surface of wy = 0.2 at t = 20 for the flow depicted in figure 5.  
Figure 8(a)  shows a side view looking normal to the principal plane, whereas figure 
8 (b) shows a view looking down with an acute angle toward the (j, z)-plane. The ellipse 
in figure 8(b) is the boundary of the spherical computational domain viewed at an angle. 
It appears as a circle when viewed normal to the principal plane. The sphere is at the 
centre of the domain in figures 8 (a)  and 8 (b). Figure 8 (b) shows that the portion of the 
vortex tube in the principal plane is retarded, owing to its interaction with the sphere, 
compared with the rest of the vortex tube (in the (y,z)-plane with its axis parallel to 
the y-axis) outside the principal plane. By measuring the radial extent of the contour 
surface (of wy = 0.2 at t = 20) in figures 8(a)  and 8(b), we find that the maximum 
radius of the contour surface outside the principal plane is 1.58 which is very close to 
the value of 1.6 taken from figure 3(b). 

3.2.2. Lift, moment, and drag coejicients and eflect of tube circulation 

Figure 9 shows the lift coefficients of the sphere as a function of time for Re = 100, 
doff = 0, and u = 1. The lift coefficients are computed for four different maximum 
fluctuation velocities (urn,, = rJ(27tg)) due to the vortex tube, with magnitudes equal 
to 0.1, 0.2, 0.3 and 0.4 (normalized by free-stream velocity). Owing to the sudden 
placement of the sphere into the stream, it initially takes a small time (0 < t < 0.6) for 
the initial flow perturbations to vanish. 

As discussed earlier, when the vortex tube approaches the sphere (0 < t < 9.4), it 
produces upwash resulting in a positive lift force on the sphere. The maximum positive 
lift coefficient CL,rnaz. occurs at t = 7.2. On the other hand, when the vortex tube 
passes the sphere, it produces downwash and high fluid velocity near the bottom of the 
sphere resulting in a negative lift force. The magnitude of the negative lift is greater 
than the positive lift (figure 9). The maximum negative lift coefficient C,,,,,, occurs 
at t = 11.8 about when the centre of the vortex tube passes the plane z = 1. The lift 
coefficient is linearly proportional to the maximum fluctuation velocity (or the 
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FIGURE 9. Lift coefficients of the sphere as a function of time and umaZ for 
Re = 100, dojj = 0 and c = 1 .  

circulation of the vortex tube for constant vortex core radius) until the vortex tube 
contacts the sphere boundary layer ( t  < 9.4). The maximum positive lift coefficient 
CL, is expressed by 

(18) - CL. max 1 - CVmax, 

where the proportionality constant c = 0.8. For t > 9.4, the relation between the lift 
coefficient and v,,, deviates slightly from linearity, but the maximum negative 
lift coefficient CL, m a x 2  is linearly proportional to v,,, with c = - 1.66. After the lift 
coefficient reaches its maximum negative value, it decays quickly towards zero because 
the vortex tube vorticity is diffused in the sphere wake. The time averaged lift 
coefficient (averaged over a time span between t = 0.6 and the maximum time 24) for 
all values of v,,, is small and negative (0(1Op2)). As mentioned earlier, the behaviour 
of CL(t) during the period 0 < t < 0.6 is influenced by the initial flow perturbation, and 
thus its value during this initial period is excluded from the averaging process. The root 
mean square CL,rms of the lift coefficient as a function of time is also linearly 
proportional to v,,, with c = 0.65 as will be shown in table 4. 

Figure 10 shows the temporal development of the moment coefficients for the sphere 
under the same conditions as figure 9. The moment coefficients are obtained for four 
different values of vmaX = 0.1, 0.2, 0.3 and 0.4. 

As the vortex tube approaches the sphere, the downward shift of the front stagnation 
point (due to the upwash) causes higher shear stress in the upper left-hand region 
compared to the lower left-hand region generating a negative (clockwise) torque. At 
the same time, the downward shift causes higher shear stress in the bottom and lower 
right-hand regions compared to the top and upper right-hand regions as explained in 
$3.2.1 generating a positive torque. The two torques compete with each other and 
result in a net weak torque in the interval 0 < t < 9. 

As the vortex tube passes the sphere (9 < t < 14), the upward shift of the front 
stagnation point (due to the downwash) causes higher shear stress in the lower left- 
hand region compared to the upper left-hand region generating a positive torque. At 
the same time, the upward shift caused higher shear stress in the top and upper right- 
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hand regions compared to the bottom and lower right-hand regions as explained in 
$3.2.1 generating a negative torque. However, the effect of this negative torque is 
diminished by the shear flow induced by the vortex across the sphere which produces 
high shear stress at the bottom of the sphere. As a consequence, a net high positive 
torque acts on the sphere. The maximum positive moment coefficient C M ,  ,,, occurs 
at t = 11.4. CM, ,,, is linearly proportional to v,,, with a proportionality constant 
c = 0.14. 

When the vortex tube is relatively far downstream from the sphere ( t  > 15), the 
positive torque due to the shear stress in the lower left-hand region competes with the 
negative torque due to the shear stress in the top and upper right-hand regions. This 
results in a net weak negative torque which becomes smaller as the vortex tube moves 
farther downstream. We note that the torque depends only on the distribution of the 
shear stresses and is relatively small compared to the lift force. 

The time-averaged moment coefficient (averaged over a time span between t = 0.6 
and 24) for all values of v,,, is nearly zero (O(lOP3)), and the root mean square CM,rms 
of the moment coefficient is approximately linearly proportional to v,,, with c = 0.05. 

Figure 11 shows the drag coefficients of the sphere as a function of time for the same 
conditions as figure 9. The drag coefficients are computed for four different values of 
v,,, = 0.1, 0.2, 0.3 and 0.4. 

As discussed earlier, the sudden placement of the sphere in the flow results in initially 
large values of shear stress and pressure on the sphere, and hence a large drag as shown 
in figure 11. Figure 5 (e) shows that at about t = 10 the centre of the vortex tube is 
located near the front stagnation point which is slightly below the point ( x , y , z )  = 

(O,O, - 1). Owing to the low pressure at the centre of the vortex tube, the pressure 
coefficient at the front stagnation point (Cpo = 0.818) is lower than that of the 
axisymmetric flow past a sphere without the vortex tube (Cpo,  = 1.107) as shown in 
figure 6(d ) .  Also, the maximum shear stresses in the upper and lower regions are lower 
than that of the axisymmetric flow without the vortex tube. This causes the drag on the 
sphere to be lower than that of the axisymmetric flow without the vortex tube. As the 
vortex tube moves around the bottom of the sphere, the front stagnation point is 



142 I. Kim, S. Elghobashi and W. A .  Sirignano 

1 6  . . . . . . . . . . . . . . . . . . . . . . . . .  

t 

FIGURE 11.  Drag coefficients of the sphere under the same conditions as figure 9. 

shifted above the plane x = 0, owing to the downwash. Consequently, high pressure 
and higher shear stress act in the upper and lower left-hand regions, respectively, as 
explained earlier in $ 3.2.1. This increases the drag during the periods 10 < t < 13.4. For 
t > 13.4, the drag approaches that of the axisymmetric flow as the vortex tube moves 
further downstream. 

The time-averaged value of the deviation of the drag coefficient from that of the 
axisymmetric flow past a sphere for all values of u,,, is nearly zero (O(10-4)). The 
unsteady drag coefficient of the axisymmetric flow past a sphere was computed for a 
sphere suddenly placed in the uniform stream without the vortex tube. 

3.3. Efects of the ofset distance 
We examine the effects of the offset distance on the flow field by varying doff  while using 
the same flow conditions as in $3.2. 

3.3.1. Ofse t  distance 1 < doff  < 4 
The temporal behaviours of the lift and moment coefficients of the sphere for 

doff = 1 are similar to those in the case of doff  = 0. The main feature distinguishing the 
case of doff  = 1 from that of doff = 0 is that in the former, the vortex tube splits into 
two parts when the vortex tube passes the sphere. The attraction of the vortex tube to 
the positive vorticity in the boundary layer at the bottom of the sphere causes some 
portion of the vortex tube to move around the bottom of the sphere, whereas the other 
portion moves on the top of the sphere, as shown in figure 12. Figures 12(a)-12(h) 
display the contour lines of y-component vorticity in the principal plane at t = 9, 10, 
11, 12, 13, 15, 18 and 21 for Re = 100, doff = 1, CT = 1, and om,, = 0.4. The contour 
values of the vorticity are k0.4, f0.5, 10.8,  f 1.4 and f 2 .  Owing to its longer 
interaction with the sphere for doff  = 1 than for doff = 0, the magnitudes of the lift and 
moment coefficients of the sphere are close to those in the case of dofT = 0 despite its 
positive offset distance initially. Equation (18) is approximately valid for CL, m a r l ,  

CL, ma5 2 ,  CL, Tms,  CM, maz ,  and CM,  Tms with the same proportionality constants as in the 
case of doff  = 0. 
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FIGURI! 12. Contour lines of y-component vorticity in the principal plane at (a)  t = 9, (b)  10, 
(c)  11, ( d )  12, (e) 13, cf) 15, (g) 18 and (h) 21 for Re = 100, doff = 1, r = 1 and u,,, = 0.4. 

Figure 13(a) shows the drag coefficients of the sphere as a function of time for 
Re = 100, doff = 1, and r~ = 1. The drag coefficients are obtained with two different 
maximum fluctuation velocities due to the vortex tube, v,,, = 0.1 and 0.2. The 
temporal behaviour of the drag coefficients is different from that of the case of doff = 0. 
The time-averaged value of the deviation of the drag coefficient from that of the 
axisymmetric flow past a sphere for all values of v,,, is not nearly zero but increases 
linearly as v,,, increases. The time-averaged drag coefficient CD, ave is expressed by 

cD,avt? = ‘D,axi +puma,, (19) 

where the constant p = 0.2, and CD, a,i is the time-averaged value of the drag coefficient 
in the case of axisymmetric flow (vmaz = 0). The drag coefficients reach their maximum 
at about t = 10. The maximum drag coefficient CD,,,, is expressed also by (19) but 
with /3 = 0.62, and CD, ,,. here is the local value of the axisymmetric drag coefficient at 
the time of CD, At about t = 10, the centre of the vortex tube is located above the 
front stagnation point. Thus, the induced velocity due to the vortex tube adds its 
magnitude to the base flow along the stagnation streamline, and so the dynamic 
pressure ahead of the front stagnation point becomes higher than that of the 
axisymmetric flow past a sphere. This causes the pressure at the stagnation point and 
the shear stresses in the upper and lower left-hand regions to be higher than those of 
the axisymmetric flow past a sphere. As a consequence, the drag is increased. When the 
offset distance is negative, the reverse phenomena would occur, and the drag would be 
decreased. This will be discussed in $3.3.2. 

Figures 14(a) and 14(b) display the contour lines of y-component vorticity in the 
principal plane at t = 9 and 12 for Re = 100, doff = 2, = 1, and v,,, = 0.4. The 
contour values of vorticities are the same as those of previous sections. Figures 14(a) and 
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FIGURE 13. Drag coefficients of the sphere as a function of time and vmax for (a) doff = 1, (b) 2, 
( c )  3 and (d) 4 with Re = 100 and CT = 1. -, axisymmetric; ---, om,, = 0.1; . . . ., v,,, = 0.2. 

FIGURE 14. Contour lines of y-component vorticity in the principal plane at 
(a) t = 9 and (b) 12 for Re = 100, doff = 2, CT = 1 and vmax = 0.4. 
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FIGURE 15. Magnitude of CL,maz2 and C,,,,, as a function of doff for 
Re = 100, u = 1 and u,,, = 0.2. 

14(b) show that the vortex tube passes above the sphere. The behaviour of the lift 
coefficients with time for doff = 2, 3 and 4 is similar to that of the case of doff  = 0 and 
1. However, their magnitudes are smaller than those for doff = 0 and 1 and decay with 
doff exponentially as shown in figure 15, where the magnitude of the negative maximum 
lift coefficient and the maximum moment coefficient for Re = 100, CT = 1, and 
urn,, = 0.2 are presented as a function of doff .  The positive maximum lift coefficient 
CL, max for doff > 2 is expressed by 

CL, max 1 = ~1 umax ~ X P  ( ~ 2  Idof#, (20) 

where c1 = 0.99 and c, = -0.3. The negative maximum lift coefficient CL,max2 is 
expressed by (20) with c1 = - 2.64 and c2 = - 0.38, and the r.m.s. lift coefficient CL, rms 

is expressed also by (20) with c, = 0.88 and c2 = -0.28. 
The behaviour of the moment coefficients with time for doff = 2,3 and 4 is also 

similar to that of the case of doff = 0 and 1. However, their magnitudes are smaller than 
those for doff  = 0 and 1 and decay with a negative power of doff as shown in figure 15. 
The maximum moment coefficient CM,max for doff 2 2 is expressed by 

where c,  = 0.185 and m= - 1.501. The r.m.s. moment coefficient CM,rms is expressed 
by (21) with c, = 0.056 and m= - 1.185. 

Figures 13 (b), 13 (c) and 13 ( d )  show the drag coefficients of the sphere as a function 
of time for doff = 2, 3 and 4, respectively, with Re = 100 and CT = 1. The drag 
coefficients are obtained with two different maximum fluctuation velocities due to the 
vortex tube, umaz = 0.1 and 0.2. The drag coefficients reach their maximum at about 
t = 10. The maximum drag coefficient C,,,,, for doff = 2 is higher than that for 
doff = 1 because the magnitude of the induced velocity added to the base flow along the 
stagnation streamline for doff = 2 is higher than that for doff = 1. We note that the 
radius of the vortex core is greater than unity at t = 10 owing to the diffusion (and the 
maximum induced velocity occurs at the edge of the vortex core) as shown in figure 3 (a)  
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for Re = 100, a = 1, and v,,, = 0.4. CD, 112ax decreases as doff increases above 2. CD, ,,, 
for doff = 2,3 and 4 are expressed by (19) with /3 = 0.9, 0.8 and 0.68, respectively. 
CD,aue for doff = 2,3 and 4 are expressed also by (19) with /3 = 0.31, 0.33 and 0.32, 
respectively. We note that the magnitude of the deviation of the drag coefficient from 
that of the axisymmetric flow decays slowly with doff, in contrast with fast decay of the 
lift and moment coefficients with dofr 

3.3.2. Offset distance - 1 2 doff 3 -4 
Note that the sign reversal of the initial tube vorticity with the offset distance kept 

positive is a mirror image of the case where the sign of the offset distance is changed 
and the sign of the initial vorticity is kept constant. Therefore, we consider only change 
in sign of the offset distance and keep the counterclockwise rotation. 

The behaviour of the lift coefficients with time for - 1 2 doff 3 -4 is similar to that 
of the case of doff = 0. However, their magnitudes are smaller than that for doff = 0 
with the same u,,, and decay exponentially with doff as shown in figure 15. The 
positive maximum lift coefficient, the negative maximum lift coefficient, and the r.m.s. 
lift coefficient for doff d - 1 are expressed by (20) with c, = 0.942 and c, = -0.295, 
c, = - 1.95 and c:, = -0.35, and c, = 0.74 and c, = -0.27, respectively. 

The behaviour of the moment coefficients with time for - 1 3 doff 3 -4 is similar to 
that of the case of doff = 0. However, their magnitudes are smaller than that for 
doff = 0 with the same u,,, and decay with a negative power of ldoffl as shown in 
figure 15. The maximum moment coefficient and the r.m.s. moment coefficient are 
expressed by (21) with c, = 0.09 and rn = - 1.264, and c3 = 0.0318 and rn = - 1.047, 
respectively. 

Figure 16(a) shows the drag coefficients of the sphere as a function of time for 
Re = 100, doff = - 1, and a = 1. The drag coefficients are obtained with two different 
maximum fluctuation velocities due to the vortex tube, u,,, = 0.1 and 0.2. The 
behaviour of the drag coefficients with time is different from that of the case of doff = 0. 
The time-averaged value of the deviation of the drag coefficient from that of the 
axisymmetric flow past a sphere at each maximum fluctuation velocity is not near zero 
but is increased linearly in negative value as the maximum fluctuation velocity becomes 
higher. The minimum drag coefficients occur at about t = 10. The minimum drag 
coefficient and the time-averaged drag coefficient are expressed by (19) with /3 = - 0.78 
and -0.2, respectively. 

At about t = 10, the centre of the vortex tube is located below the front stagnation 
point. Thus, the induced velocity due to the vortex tube subtracts its magnitude from 
the base flow along the stagnation streamline, and so the dynamic pressure ahead of 
the front stagnation point becomes lower than that of the axisymmetric flow past a 
sphere. This causes the pressure at the front stagnation point and the shear stresses in 
the upper and lower left regions to be lower than those of the axisymmetric flow past 
a sphere. As a consequence, the drag is decreased. From this result, we deduce that if 
the sphere were free to move rather than fixed, it would experience lower drag than 
that of a sphere subjected to an axisymmetric flow unless the initial offset distance is 
large positive. The lower drag will be caused by the upward motion of the sphere owing 
to the upwash when the vortex tube approaches it, and thus the centre of the vortex 
tube will be located below the front stagnation point of the sphere. This will cause 
lower dynamic pressure ahead of the front stagnation point. 

Figures 16(bt16(d) show the drag coefficients of the sphere as a function of time for 
doff = - 2, - 3 and - 4 with Re = 100 and c = 1. The minimum drag coefficients occur 
at about t = 10. The minimum drag coefficient CD, for doff = - 2 is lower than that 
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FIGURE 16. Drag coefficients of the sphere as a function of time and u,,, for (a) do, = -1 ,  (b)  
-2, (c) -3 and (d)  -4  with R e =  100 and m =  1. -, axisymmetric; --- , umaz = 0.1; 

, u,,, = 0.2. . . . .  

for doff = - 1, because the magnitude of the induced velocity subtracted from the base 
flow along the stagnation streamline is higher for doff = -2 compared to doff = - 1. 
The magnitude of CD,min increases as don decreases below -2. The minimum drag 
coefficients for doff  = -2, -3 and -4 are expressed by (19) with p = -0.9, -0.8 and 
- 0.68, respectively. The time-averaged drag coefficients for doff  = - 2, - 3 and - 4 are 
expressed also by (19) with p = - 0.28, -0.3 and - 0.29, respectively. We note that the 
magnitude of the deviation of the drag coefficient from that of the axisymmetric flow 
decays slowly with do,, in contrast with fast decay of the lift and moment coefficients 
with do,,. 

3.4. EfSects of the size of the vortex tube 

We examine the effects of the size of the vortex tube on the flow field by performing 
computations similar to those in $3.2 for Re = 100, doff = 0, and five different sizes of 
the vortex tube, 0.25 d c d 4 in addition to the base case cr = 1. Each simulation is 
performed with two different values of vmaz = 0.1 and 0.3. 

Table 4 shows the maximum positive lift coefficient, the maximum negative lift 
coefficient, the r.m.s. lift coefficient, the maximum moment coefficient, and the r.m.s. 
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0.3 0.337 
0.1 0.113 

0.3 0.338 
0.1 0.114 

0.3 0.318 
0.1 0.107 

0.3 0.238 
0.1 0.0810 

0.3 0.147 
0.1 0.0499 

0.3 0.08 1 5 
0.1 0.0275 

‘L, maz 2 ‘L, rms 

n = 4  
-0.566 0.307 
-0.190 0.102 

-0.604 0.299 
-0.201 0.099 7 

-0.611 0.271 
-0.203 0.0907 

-0.500 0.195 
-0.165 0.065 8 

-0.322 0.119 
-0.106 0.0402 

-0.177 0.0660 
-0.0583 0.022 1 

n = 3  

n = 2  

n = l  

n = 0.5 

n = 0.25 

‘ M ,  mar. 

0.036 1 
0.012 1 

0.041 4 
0.0139 

0.045 5 
0.0155 

0.041 0 
0.0145 

0.0290 
0.0103 

0.0175 
0.00604 

‘ M ,  T m S  

0.016 1 
0.00546 

0.0169 
0.005 77 

0.0169 
0.005 93 

0.0138 
0.005 14 

0.009 53 
0.003 55 

0.005 87 
0.002 10 

TABLE 4. Maximum positive lift coefficient, maximum negative lift coefficient, root mean square of 
the lift coefficient, maximum moment coefficient, and root mean square of the moment coefficient 
as a function of u,,, for six different radii of the vortex tube, n = 4, 3, 2, 1, 0.5 and 0.25. 

moment coefficient as a function of v,,, for six different initial radii of the vortex tube, 
a = 4,3,2,  1,0.5 and 0.25. All the coefficients are linearly proportional to vmax at each 
a. When a 2, C,,,,,, and CL,rms become independent of a, but the magnitudes of 
CL, and C M ,  rms for a = 4 are smaller than those for a = 2 and 3. When 
a approaches zero, all the coefficients tend to be proportional to (avma,) which is the 
circulation of the vortex tube divided by 27c (r, = 27cav,,,). For example, CL,rms is 
expressed by 

C M ,  

CL, 7,s = ~1 (2 d a d 41, 

= c2 v,,, a“ (0.25 d a < 2, 0.75 2 n 2 0.5), (22) 

where the constant c, = 1 and c2 = 0.65, and n depends on CT and should approach 
unity as a reaches zero. For CL,maxl ,  c1 = 1.1 and c, = 0.8. CL,max2, CM,,,,, and 

for a ,< 3 are also expressed by (22) with c - -2 and c2 = - 1.66, c1 = 0.14 
and c p  = 0.14, and c, = 0.055 and c2 = 0.05, respectively. The time-averaged value of 
the deviation of the drag coefficient from that of the axisymmetric flow past a sphere 
for all values of CT is nearly zero (O(10p4)). 

and C M ,  rms for a = 4 are, respectively, smaller than 
those for CT = 2 and 3, and the reason is explained as follows. When the initial size of the 
vortex core is considerably larger than the sphere size (a 2 4), the effect of the shear flow 
(induced by the passage of the vortex tube) across the sphere diminishes. We explained 
in $3.2.1 that the magnitude of CL,max2 depends on the combined effects of the 
downwash and the shear flow across the sphere due to the vortex tube. As a result, the 
magnitude of CL9 and C M ,  rms 
also decrease for the same reason. In addition, when the initial size of the vortex core 
is larger than the sphere size, the effect of the wake behind the sphere on the vortex tube 
diminishes. As a consequence, the magnitudes of the lift and moment coefficients decay 

1. - 

We note that C,, ,,,,, CM, 

, decreases and approaches CL, maz , as a % 1. CM, 
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slowly towards zero after they peak near the time of passage of the vortex tube centre 
by the plane z = 1. 

Summarizing the effects of the vortex size, the maximum positive lift coefficient and 
the r.m.s. lift coefficient depend only on the circulation r, at small values of u while 
they depend only on v,,, (and not u) at large values of g. For mid-range values of u, 
they depend on both u and v,,, (or equivalently both u and TJ. 

In $3.3, we investigated the effect of the offset distance on the flow field for Re = 100 
and u = 1. We now examine the effect of initial offset distance of the vortex tube on 
the lift and moment coefficients of the sphere as a function of the size of the tube at  
Re = 100. The values of CL,maxlr  CL,max2, and C,,,,, of the sphere for initial offset 
distance of the vortex tube in the range of -0.5 dI2 6 doff 6 u1/2 are within 5 YO 
difference from their values for doff  = 0. On the other hand, C,, and C,, ,,, of the 
sphere for initial offset distance of the vortex tube in the same range vary by 13 % from 
their values for doff = 0. 

3.5. Efl'ects of Reynolds number 
Computations similar to those in $3.2 were performed for four different Reynolds 
numbers in the range of 20 6 Re 6 80, doff  = 0, and u = 1 with v,,, = 0.2 in addition 
to the base case Re = 100. We also performed the same calculation with two different 
values of v,,, = 0.1 and 0.3 and found that CL,maxl,  CL,ma,l, CL,rms,  C,,,,,, and 
C,, ,,, are linearly proportional to v,,, for each Reynolds number. Figures (17)-(20) 
show results for v,,, = 0.2. 

Figure 17 shows the total maximum positive lift coefficient and the coefficients due 
to pressure and viscous contributions as a function of Reynolds number for u = 1 and 
doff  = 0 with v,,, = 0.2. The coefficient due to pressure contribution is a little higher 
than that due to viscous contribution at  Reynolds number 100. Both coefficients due 
to pressure and viscous contributions increase as the Reynolds number decreases, but 
the viscous coefficient becomes greater. The total maximum positive lift coefficient 
increases with a negative power of Reynolds number as Reynolds number decreases, 
as will be shown in figure 19 on a log-log scale and is expressed by 

where the constant A = 3.5 and P = -0.32. 
Figure 18 shows the total maximum negative lift coefficient and the coefficients due 

to pressure and viscous contributions as a function of Reynolds number for u = 1 and 
doff = 0 with v,,, = 0.2. The magnitude of the coefficient due to pressure contribution 
is 2.38 times higher than that due to viscous contribution at Reynolds number 100. As 
mentioned in 5 3.2, the sphere experiences the maximum negative lift coefficient whose 
magnitude is greater than the maximum positive lift coefficient when the vortex tube 
passes the sphere, because the vortex tube produces high fluid velocity gradient across 
the sphere as well as downwash on the sphere. (We note that the shear flow effect 
induced by the vortex tube would diminish when the size of the vortex tube becomes 
large.) Thus, the pressure contribution is much higher than the viscous contribution to 
the total maximum negative lift coefficient. The magnitude of the coefficient due to 
viscous contributions increases as the Reynolds number decreases, on the other hand, 
that due to pressure contribution decreases as the Reynolds number decreases. As a 
consequence, the magnitude of the total maximum negative lift coefficient is not 
sensitive to the change of the Reynolds number and slowly increases as the Reynolds 
number decreases. 
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FIGURE 17. Total maximum positive lift coefficient and the coefficients due to pressure and viscous 
contributions as a function of Reynolds number for doff = 0 and = 1 with u,,, = 0.2. 0, total; 0, 
pressure; A, viscous. 
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FIGURE 18. Total maximum negative lift coefficient and the coefficients due to pressure and viscous 
contributions as a function of Reynolds number under the same conditions as figure 17. 0, total; 0, 
pressure; A, viscous. 

Figure 19 shows the r.m.s. lift coefficient and also the maximum positive lift 
coefficient as a function of Reynolds number on a log-log scale for u = 1 and doff  = 0 
with v,,, = 0.2. The r.m.s. lift coefficient increases with a negative power of Reynolds 
number as the Reynolds number decreases and is expressed by (23) with A = 2.3 and 
P = -0.275 for u = 1. The effect of Reynolds number (20 d Re < 80) on the lift 
coefficient was investigated for the vortex size larger than u = 1 (2 < u < 4). The 
maximum positive lift coefficient and the r.m.s. lift coefficient are linearly proportional 
only to v,,, and independent of u when u 2 at fixed Reynolds number as in 33.4 for 
Re = 100. The r.m.s. lift coefficient is expressed by (23) with A = 8.1 and P = -0.45 
and written again here for later use. 

CL,rms = 8.lv,,, 2 d u d 4. (24) 



Unsteady $ow interactions 

1 -  

Y 

.d i ? .  
0 

W 
E 
8 
5 
I4 

0.1 -I 

151 

A 

A 
0 

A 

0 
0 A 

10 100 
Re 

FIGURE 19. Root mean square of the lift coefficient and maximum positive lift coefficient as a 
function of Reynolds number under the same conditions as figure 17. A, maxl; 0, r.m.s. 
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FIGURE 20. Maximum moment coefficient and root mean square of the moment coefficient as a 
function of Reynolds number under the same conditions as figure 17. A, max; 0, r.m.s. 

For the maximum positive lift coefficient, A = 8.9 and P = -0.45. 
Figure 20 shows the maximum moment coefficient and the r.m.s. moment coefficient 

as a function of Reynolds number for g = 1 and do, = 0 with v,,, = 0.2. The 
maximum moment coefficient and the r.m.s. moment coefficient are affected by only 
the viscous effect and increases with a negative power of Reynolds number as the 
Reynolds number decreases. C,, ,,, and C,, ,,, follow the form of (23) with A = 1.95 
and P = -0.56 for the former, and A = 1.05 and P = -0.665 for the latter for cr = 1. 
The effect of Reynolds number (20 < R e  < 80) on the moment coefficient was 
investigated for 2 < CT < 4. The behaviour of the moment coefficient at each Reynolds 
number is similar to that of the moment coefficient at Re = 100 which was explained 
in 93.4. C,,,,, and C,,,,, follow the form of (23) with A = 5.5 and P = -0.83 for 
the former, and A = 3.1 and P = -0.88 for the latter for 2 < CT < 3.  
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FIGURE 21. Lift coefficients of the sphere as a function of time and u,,, for 
Re = 20, doff = 0 and u = 1 .  

The variation of the lift and moment coefficients for -0.5 diz d doff < di2 from 
those for doff  = 0, which is given in $3.4 for Re = 100, decreases at fixed B as the 
Reynolds number decreases. For example, at Re = 20, the difference in the lift 
coefficient is 4 O h  and that in the moment coefficient is 10 YO. 

We investigate the lift, moment and drag coefficients at Reynolds number 20 in order 
to find out about the Reynolds number effect in more detail. Figure 21 slows the lift 
coefficients of the sphere as a function of time for Re = 20, doff = 0, and u = 1. The lift 
coefficients are obtained with four different maximum fluctuation velocities due to the 
vortex tube, urnax = 0.1,0.2, 0.3 and 0.4. The maximum positive lift coefficient CL, rnaxl 

occurs at t = 6.6, and the maximum negative lift coefficient CL, rnax2~occurs at t = 12.5. 
The lift coefficient is linearly proportional to the maximum fluctuation velocity (or the 
circulation of the vortex tube) at each time over the whole time computed (0 < t < 24). 
This shows that the nonlinear effect at Re = 20 is much less than that at Re = 100. In 
contrast to figure 13 which shows the lift coefficient for Re = 100, figure 21 shows that 
the lift coefficient decays slowly to zero after it attains the maximum negative value. 
This indicates that for Re = 100 viscous diffusion in the wake is much stronger than 
that in the upstream; on the other hand, viscous diffusion is uniformly important all 
around the sphere at Re = 20 compared to Re = 100. The behaviour of the moment 
and drag coefficients with time is similar to that of the case of Re = 100. The time- 
averaged lift and moment coefficients are nearly zero (O(10P) and O( 
respectively), and the time-averaged drag coefficient is close to that of the axisymmetric 
flow without the vortex tube (the difference between them is O(1OP2)). 

One of the reviewers noted that some of our results can be explained using 
dimensional analysis as follows. The lift force on the sphere can be expressed in a 
functional form as 

F;(t') =flu:, p', p', a;, F, d, dLff; t'). 

From dimensional analysis, it follows that 
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where $$ are the four parameters appearing on the left-hand side of the last equal sign. 
If Reynolds number and the dimensionless offset distance are fixed, C,(t) will be a 
function of $1, $ 2 ,  and t. Furthermore, when d / a h  is small, we expect that ah is more 
important than d. Then C, should be a function only of $1/$2 and t yielding: 

In the opposite limit, al, should be unimportant and 

Equations (25) and (26) are consistent with our results in $3.4. 
Finally, we discuss the effect of the initial location of the vortex tube upstream from 

the centre of the sphere. We have shown earlier that the maximum positive lift 

of the vortex, I ,  is 10 radii. From a different initial location, say I*,  the equation for the 
maximum positive lift coefficient should be modified as follows. 

coefficient is expressed at given CT and Re as C,, - - cum,, when the initial location 

- 
CL, max 1 - cumax 

V m a x  

where we used vmax/v:ax = v*/u and v*’ - u2 = 10.04 (I* - I ) /Re ,  which are obtained 
from the evolution of a point vortex in a viscous fluid (Batchelor 1967). u*,,, denotes 
the maximum fluctuation velocity due to the vortex tube whose initial location is I* radii 
upstream from the centre of the sphere. Note that the proportionality constant c is now 
modified as c* for the new initial location of the vortex I* 

We examined the accuracy of (27) by performing computations for I* = 8 and 12 
with the same parameters as used in $3.2.1 except the initial location of the vortex tube. 
The magnitude of CL, maxi obtained from (27) differs by 0.2 YO from that of the full 
computations. The equation of the r.m.s. lift coefficient should also be modified as 
(27) for the new initial location of the vortex tube. In addition, the time span, tau,, over 
which averaging the lift coefficient is performed should be modified according to 
t&, = t,,, + (I* - 1). 

4. Conclusions 
As a first step towards better understanding the physics of interaction between a 

particle and the turbulent carrier flow, we have investigated numerically the unsteady, 
three-dimensional, incompressible, viscous flow interactions between a vortical 
(initially cylindrical) structure advected by a uniform free stream and a spherical 
particle suddenly placed and held fixed in space for a range of particle Reynolds 
numbers 20 < Re d 100. The counterclockwise rotating cylindrical vortex tube is 
initially located ten sphere-radii upstream from the centre of the sphere. 
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A summary of our findings and their applications is provided as follows. 
(i) One significant finding in our study is that the r.m.s. lift coefficient for a particle 

is linearly proportional to the upwash (or downwash) induced by the vortex tube 
motion on the particle normal to the direction of the free stream in our case (or the 
direction of the particle motion in the case of a free particle) and is independent of the 
size of the vortex tube when the size of the vortex is greater than that of the particle, 
2 < d 4. This result can be applied to turbulent flows containing small concentration 
of particles in order to obtain the r.m.s. lift force on a particle. A turbulent flow 
possesses a wide spectrum of eddy sizes. The large eddies contain most of the turbulent 
kinetic energy and produce high-velocity fluctuations, and so they are responsible for 
the dispersion of particles. The particle size, at the extremes, may be comparable to 
either the integral lengthscale or to the Kolmogorov lengthscale. When the size of 
particle is comparable to the integral lengthscale, the r.m.s. lift coefficient of the particle 
is obtained by (24). Furthermore, our results tend to support the idea that (24) would 
be applicable to the case of an eddy much larger than the particle. Thus, when the size 
of particle is comparable to the Kolmogorov lengthscale, the r.m.s. lift coefficient of the 
particle can be calculated approximately by (24), where u,,, is the maximum velocity 
fluctuation due to an eddy of size comparable to the integral lengthscale. The time 
during which the particle is influenced by the eddy is of the order of the eddy life time. 

The deflection of the particle path will depend on the magnitude of the r.m.s. lift 
coefficient and the ratio, pr, of the particle density to that of the carrier fluid 
(C, = &A, where A is the dimensionless acceleration of the particle due to the lift 
force). This result provides a simple method to estimate the deflection of particle 
trajectory in the dilute particle-laden turbulent flow. Equation (24) and the non- 
dimensionalized Newton’s second law show that the deflection increases slowly as the 
Reynolds number of the particle decreases. 

(ii) The magnitude of the r.m.s. moment coefficient of the particle is one order of 
magnitude less than that of the r.m.s. lift coefficient when Re 2 20. Furthermore, when 
the initial size of the vortex core is considerably larger than the sphere size (g 2 4), the 
effect of the shear flow (induced by the passage of the vortex tube) across the sphere 
diminishes and the torque on the particle decreases. Thus, the torque on the particle 
might be negligible in many applications. 

(iii) When a vortex tube advected by a uniform free stream approaches a sphere, the 
sphere experiences lower drag than that of a sphere subjected to an axisymmetric flow 
if the sphere were free to move rather than fixed, unless the initial offset distance of the 
vortex tube is large positive, as explained in $3.3.2. The lower drag is caused by the 
upward motion of the sphere due to the upwash of the approaching vortex tube, and 
thus the centre of the vortex tube would be located below the front stagnation point 
of the sphere. This causes lower dynamic pressure ahead of the front stagnation point. 

(iv) Some interesting unsteady phenomena in the near wake have been discovered. 
The shape of the near wake behind the spherical particle is controlled by the pressure 
difference between the top and bottom of the near wake as was indicated by Kim et al. 
(1993). The instantaneous flow patterns around a spherical particle in a turbulent flow 
would include some of those described in this paper. For example, our recent results 
(to be published), from a study of the interactions between a vortex pair advected by 
a uniform free stream and a sphere, show that the streamlines are similar to those 
described in the present paper. 

We are also studying the heat and mass transfer for a droplet interacting with an 
array of vortices in high-temperature and high-pressure environments such as that in 
a gas turbine combustor. 
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